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Due to their extraordinary level of oxygenation and the
presence of highly electrophilic oxiranyl ketone functional-
ities, spiroketal naphthodecalins of the preussomerin, pal-
marumycin, and diepoxin type present challenging targets
for total synthesis (Figure 1). We have recently established
efficient approaches toward palmarumycin CP1 and (()-
deoxypreussomerin A (palmarumycin C2).1 Independently,
total syntheses of palmarumycin CP1, CP2, and the related
CJ-12,371 have also been disclosed by Barett et al. and
Taylor et al.2,3 The structure of the more highly oxygenated
diepoxin σ (Sch 49209) was reported in 1993 by Schlingmann
et al. from American Cyanamid and in 1994 by Chu et al.
from Schering-Plough.4,5 The absolute stereochemistry of
diepoxin σ was assigned in 1996 by exciton-coupled CD.6
Diepoxin σ shows considerable antifungal activity and MIC’s
against a panel of selected bacteria in the range of 4-32
µg/mL.4 The Schering group also reported potent in vitro
activity in the antitumor invasion assay, with an IC50 of 0.75
µM against HT 1080 human fibrosarcoma cells.5 Further-
more, in vivo this compound demonstrated a significant
reduction in the size of primary tumors and the number of
metastases.5

As a continuation of our program toward the synthesis
and mechanistic evaluation of the reactivity pattern of
epoxyketone natural products such as aranorosin and manu-
mycins,7 we reported the first synthetic strategy toward
diepoxins in 1997.8 In a demonstration of the use of long-
range dipole effects in chiral auxiliary design, we were able
to obtain enantiomerically pure model compound 2 in eight
steps and 8.3% overall yield from 1 (Scheme 1).8 However,
after selective monohydrolysis of the trifluoromethyl acetal
and hydroxy-group directed bis-epoxidation followed by
removal of the chiral auxiliary from 3 to give diketone 4,
we were unable to introduce naphthodiol to gain access to
spiroketal 5. Therefore, we modified our retrosynthetic
strategy to diepoxin σ as shown in Scheme 2.

Introducing the naphthodiol acetal before enone epoxida-
tion by spirocyclization1 to quinone 6 was envisioned to solve
the problems encountered in the acetalization stage of our
first generation approach shown in Scheme 1. The biaryl
ether precursor to 6 could be conveniently derived by
Ullmann ether coupling of protected hydroquinone 8 with
8-iodo-1-methoxynaphthalene (7).1 During the entire course
of the synthesis, the enone alkene moiety in the target
molecule was going to be protected as the Diels-Alder

adduct with cyclopentadiene.9,10 Despite the risk involved
in a high-temperature retro Diels-Alder reaction on the
densely functionalized diepoxin core, this strategy proved
successful for the first preparation of this highly oxygenated
natural product.

[4 + 2] Cycloaddition between O-methylnaphthazarin (9)11

and cyclopentadiene followed by syn-reduction of naphtho-
quinone 10 readily provided the desired phenol 8 (Scheme
3). Ullmann coupling of this triol with iodide 712 in the
presence of stoichiometric copper(I) oxide13 led to the biaryl
ether 11 in 70% yield. Demethylation of 11 proved to be a
very challenging reaction due to the acid/base lability of the
two benzylic alcohols. After considerable experimentation
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with various methyl aryl ether cleavage protocols, we found
that lithiated diphenylphosphine14 was very well suited to
convert 11 into tetrol 12 in near-quantitative yield.

Oxidative acetalization1 of tetrol 12 with iodobenzene
diacetate15 in hexafluoro-2-propanol provided the naphtho-
quinone 6 in 61% yield (Scheme 4). In contrast, oxidation in
trifluoroethanol or methylene chloride/acetonitrile failed to
give a satisfactory yield (only 25-30% of 6 could be isolated).
After regioselective protection of the less hindered alcohol
and oxidation with pyridinium dichromate, bis-epoxidation
from the convex face of dienedione 14 led to the advanced
intermediate 15 in 88% yield. Traces of a stereoisomeric side

product were observed at room temperature, but only a
single diepoxide was isolated when the reaction was run at
0 °C. Despite the high temperatures required for the retro
Diels-Alder reaction of compound 15, the use of diphenyl
ether at 250-260 °C reflux temperatures smoothly converted
the pentacyclic 15 to the corresponding γ-silyloxy enone,
which provided the desired (()-diepoxin σ after deprotection
with aqueous HF. The synthetic compound was obtained in
10 steps and 15% overall yield from naphthoquinone 9 and
was spectroscopically identical to data reported for the
natural sample.16

This methodology establishes, for the first time, a suc-
cessful synthetic strategy toward the highly oxygenated
diepoxin family of naphthaline dimers. We are also able to
obtain enantiomerically highly enriched material from an
asymmetric version of the Diels-Alder reaction of O-
methylnaphthazarin and cyclopentadiene (Scheme 5). In the
presence of 2 equiv of chiral ligand 16,17 (-)-10 was isolated
in 70% ee.18 Further progress toward the asymmetric total
syntheses of diepoxins will be reported in due course.
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